Machine Elements af Peder Klit
?/100
Endnu ingen anmeldelser

Machine ElementsAnalysis and Designaf Peder Klit, Niels L. Pedersen, & Knud Casper

Machine Elements Analysis and Design 3rd edition 
 
This book is intended to provide graduate and undergraduate students with basic understanding of machine element theory, and to introduce tools and techniques facilitating design calculations for a number of frequently encountered mechanical elements. The material in the book is appropriate for a course in Machine Elements and/or Mechanical Engineering Design for students who have passed first and second year basic courses in engineering physics, engineering mechanics and engineering materials science. At the end of each chapter in the book, references, which may be useful for further studies of specific subjects or for verification, are given.

NOTE: The exercise book for this is called Machine Elements Analysis and Design - Problems and it can be purchased separately.

Contents 
Preface to the third edition Contents 
 
1 Limits, fits and surface properties 
1.1 Introduction 
1.2 Geometrical tolerances
1.2.1 Specifying geometrical tolerances
1.2.2 Toleranced features
1.3 Surface texture 
1.3.1 Surface Texture Parameters
1.4 Tolerances on lengths, diameters, angles 
1.4.1 Dimensions and tolerances
1.4.2 Fits
1.4.3 Functional dimensioning
1.4.4 Dimension chains
1.5 The ISO-tolerance system
1.5.1 Introduction
1.5.2 Field of application
1.5.3 Terms and definitions 
1.5.4 Tolerances and deviations
1.5.5 Preferred numbers
1.5.6 Standard tolerance grades IT1 to IT16
1.5.7 Formula for standard tolerances in grades IT5 to IT16
1.6 Nomenclature
1.7 References
2 Springs
2.1 Introduction 
2.2 The design situation
2.3 Helical springs 
2.3.1 Formulas for helical springs
2.3.2 Stress curvature correction factor 
2.3.3 Material properties
2.3.4 Relaxation
2.3.5 Types of load
2.3.6 Dynamic loading
2.3.7 Compression springs
2.3.8 Extension springs
2.4 Belleville springs or coned-disc springs
2.4.1 Formulas for Belleville springs 
2.5 Helical torsion springs
2.5.1 Methods of loading
2.5.2 Binding effects 
2.5.3 Formulas for helical torsion springs 
2.6 Spiral springs
2.6.1 Clamped outer end
2.6.2 Simply supported outer end
2.7 Supplementary literature 
2.8 Nomenclature 
2.9 References 
3 Rolling element bearings 
3.1 Introduction 
3.2 Bearing types 
3.2.1 Available space 
3.2.2 Loads
3.2.3 Combined load 
3.2.4 Misalignment 
3.2.5 Speed 
3.2.6 Stiffness 
3.2.7 Axial displacement 
3.3 Load carrying capacity and life 
3.3.1 Basic load ratings 
3.3.2 Life 
3.3.3 Basic rating life equation 
3.3.4 Requisite basic rating life 
3.3.5 Adjusted rating life equation 
3.3.6 Combination of life adjustment factors a2 and a3 
3.3.7 SKF Life Theory 
3.4 Calculation example 
3.5 Calculation of dynamic bearing loads 
3.5.1 Gear trains
3.5.2 Belt drives
3.5.3 Equivalent dynamic bearing load
3.5.4 Constant bearing load 
3.5.5 Fluctuating bearing load 
3.5.6 Requisite minimum load 
3.6 Selecting static loaded bearing 
3.6.1 Stationary bearing 
3.6.2 Static load rating 
3.6.3 Requisite basic static load rating 
3.7 Radial location of bearings - Selection of fit 
3.8 Bearing lubrication 
3.9 Nomenclature 
3.10 References 
4 Shafts
4.1 Introduction 
4.1.1 Terminology 
4.2 Types of load 
4.3 Shaft design considerations 
4.3.1 Possible modes of failure 
4.4 Static loading 
4.5 Design for fatigue (cyclic load/dynamic load) 
4.5.1 Stress concentration
4.5.2 S-N curve or Wöhler curve 
4.5.3 Estimation of endurance level
4.5.4 Fluctuating load 
4.6 Design for shaft deflections 
4.7 Design for critical shaft speeds 
4.8 Suggested design procedure, based on shaft yielding 
4.9 Nomenclature
4.10 References 
5 Shaft-hub Connections 
5.1 Introduction 
5.2 Positive connections 
5.2.1 Pinned and taper-pinned joints 
5.2.2 Parallel keys and Woodruff Keys 
5.2.3 Splined joints 
5.2.4 Prestressed shaft-hub connections 
5.2.5 Failure of positive connections 
5.3 Connection with force (Transmission by friction) 
5.3.1 Cone interference fit 
5.3.2 Interference fit with spacers
5.3.3 Interference fit (press and shrink fits) 
5.4 Design modification/optimization 
5.4.1 Spline design 
5.5 Nomenclature 
5.6 References 
6 Threaded Fasteners 
6.1 Introduction 
6.2 Characteristics of screw motion
6.3 Types of thread 
6.4 Types of bolts and nuts
6.5 Material specification for bolts and nuts
6.6 Force and torque to preload a bolt
6.7 Deflection in joints due to preload 
6.8 Superposition of preload and working loads
6.9 Failure of bolted connections
6.10 Design modification/optimization 
6.11 Nomenclature 
6.12 References 
7 Couplings and universal joints 
7.1 Introduction to couplings 
7.2 Functional characteristics 
7.2.1 Shaft elongation or shaft division 
7.2.2 Misaligned shafts or angular deviation 
7.2.3 Man-operated engagement or disengagement
7.2.4 Torque-sensitive clutches 
7.2.5 Speed-sensitive clutches 
7.2.6 Directional (one-way) clutches, overrun clutches 
7.3 Permanent torsionally stiff couplings 
7.3.1 Rigid couplings 
7.3.2 Universal joints and other special joints 
7.4 Permanent elastic couplings
7.4.1 General purpose 
7.4.2 Selection procedures 
7.4.3 Damping 
7.4.4 Max coupling torque for squirrel-cage motor 
7.5 Overload couplings and safety couplings 
7.6 Nomenclature 
7.7 References
8 Clutches 
8.1 Friction clutches 
8.1.1 Torque transmission (static) 
8.1.2 Transient slip in friction clutches during engagement 
8.1.3 Dissipated energy in the clutch 
8.1.4 Layout design of friction clutches 
8.2 Automatic clutches 
8.2.1 Speed-sensitive clutches (centrifugal clutches) 
8.2.2 Directional (one-way) clutches. overrun clutches
8.3 Nomenclature 
9 Brakes 
9.1 Drum brakes 
9.1.1 Self-energizing 
9.1.2 Braking torque and friction radius 
9.1.3 Wear and normal pressure for parallel guided shoe 
9.1.4 Wear and normal pressure for non-pivoted long shoe
9.1.5 Wear and normal pressure for pivoted long shoe
9.2 Disc brakes
9.3 Cone brakes 
9.3.1 Uniform pressure model 
9.3.2 Uniform wear model 
9.4 Band brakes 
9.5 Nomenclature 
10 Belt Drives 
10.1 Introduction
10.1.1 Reasons for choosing belt drives 
10.2 The belts 
10.3 Belt drive geometry (kinematics) 
10.4 Belt forces
10.4.1 Flat belt 
10.4.2 V-belt 
10.4.3 Including inertia
10.5 Belt stress (flat belt)
10.6 Optimization of belt-drives
10.7 Plot of the belt forces 
10.8 Nomenclature 
10.9 References 
11 The geometry of involute gears
11.1 Introduction 
11.2 Internal and external gears 
11.3 Gear ratio 
11.4 Gears in mesh 
11.5 Tooth shapes 
11.6 Involute tooth shape basics 
11.7 Basic rack 
11.8 Pitch and module
11.9 Under-cutting 
11.10 Addendum modification (profile shift) 
11.11 Tooth thickness 
11.12 Calculating the addendum modification 
11.13 Radial clearance
11.14 Gear radii 
11.15 Contact ratio 
11.16 Base tangent length
11.17 Helical gears 
11.18 Nomenclature
11.19 References 
12 The strength of involute gears
12.1 Introduction
12.2 General influence factors
12.2.1 Nominal tangential load, FNt
12.2.2 Application factor, KA
12.2.3 Dynamic factor, KV 
12.3 Longitudinal (axial) load distribution factors, KHβ, KFβ
12.3.1 Principles of longitudinal load distributions
12.4 Transverse load distribution factors, KHα, KFα 
12.4.1 Formulas for determination of factors 
12.5 Calculation of surface durability (pitting) 
12.5.1 Fundamental formulas 
12.5.2 Allowable contact stress
12.5.3 Safety factor for contact stress (against pitting)
12.5.4 Zone factor 
12.5.5 Elasticity factor
12.5.6 Contact ratio factor 
12.5.7 Helix angle factor 
12.5.8 Life factor 
12.5.9 Lubrication factor 
12.5.10 Roughness factor 
12.5.11 Speed factor 
12.5.12Work hardening factor
12.6 Calculation of load capacity (tooth breakage) 
12.6.1 Fundamental formulas 
12.6.2 Allowable tooth root stress 
12.6.3 Safety factor for tooth root stress (against tooth breakage) 
12.6.4 Tooth form factor 
12.6.5 Helix angle factor 
12.6.6 Life factor 
12.6.7 Relative notch sensitivity factor, Yδ 
12.6.8 Relative surface condition factor 
12.6.9 Size factor
12.7 Elastohydrodynamic lubrication in gears 
12.8 Design modification/optimization 
12.9 Nomenclature 
12.10 References 
13 2D Joint Kinematics 
13.1 Introduction 
13.2 Joints in 2D 
13.3 Degrees of freedom 
13.4 Position, velocity and acceleration analysis 
13.5 Mechanism design
13.6 Nomenclature 
13.7 References 
Appendix A: Tables with ISO-tolerances and fits 
Appendix B: Stress concentration factors 
B.1 References 
Index 

?/100
Endnu ingen anmeldelser
De bedste priser:

Ingen boganmeldelser ...Læs mere

Vi er endnu ikke stødt på en boganmeldelse af 'Machine Elements' i de 454 aviser, blogs og andre medier, vi har fulgt siden 2010. Men vi har fundet 107.389 andre anmeldelser af bøger.