This book is intended to provide graduate and undergraduate students with basic understanding of machine element theory, and to introduce tools and techniques facilitating design calculations for a number of frequently encountered mechanical elements. The material in the book is appropriate for a course in Machine Elements and/or Mechanical Engineering Design for students who have passed first and second year basic courses in engineering physics, engineering mechanics and engineering materials science. At the end of each chapter in the book, references, which may be useful for further studies of specific subjects or for verification, are given.
NOTE: The exercise book for this is called Machine Elements Analysis and Design - Problems and it can be purchased separately.
Contents
Preface to the third edition Contents
1 Limits, fits and surface properties
1.1 Introduction
1.2 Geometrical tolerances
1.2.1 Specifying geometrical tolerances
1.2.2 Toleranced features
1.3 Surface texture
1.3.1 Surface Texture Parameters
1.4 Tolerances on lengths, diameters, angles
1.4.1 Dimensions and tolerances
1.4.2 Fits
1.4.3 Functional dimensioning
1.4.4 Dimension chains
1.5 The ISO-tolerance system
1.5.1 Introduction
1.5.2 Field of application
1.5.3 Terms and definitions
1.5.4 Tolerances and deviations
1.5.5 Preferred numbers
1.5.6 Standard tolerance grades IT1 to IT16
1.5.7 Formula for standard tolerances in grades IT5 to IT16
1.6 Nomenclature
1.7 References
2 Springs
2.1 Introduction
2.2 The design situation
2.3 Helical springs
2.3.1 Formulas for helical springs
2.3.2 Stress curvature correction factor
2.3.3 Material properties
2.3.4 Relaxation
2.3.5 Types of load
2.3.6 Dynamic loading
2.3.7 Compression springs
2.3.8 Extension springs
2.4 Belleville springs or coned-disc springs
2.4.1 Formulas for Belleville springs
2.5 Helical torsion springs
2.5.1 Methods of loading
2.5.2 Binding effects
2.5.3 Formulas for helical torsion springs
2.6 Spiral springs
2.6.1 Clamped outer end
2.6.2 Simply supported outer end
2.7 Supplementary literature
2.8 Nomenclature
2.9 References
3 Rolling element bearings
3.1 Introduction
3.2 Bearing types
3.2.1 Available space
3.2.2 Loads
3.2.3 Combined load
3.2.4 Misalignment
3.2.5 Speed
3.2.6 Stiffness
3.2.7 Axial displacement
3.3 Load carrying capacity and life
3.3.1 Basic load ratings
3.3.2 Life
3.3.3 Basic rating life equation
3.3.4 Requisite basic rating life
3.3.5 Adjusted rating life equation
3.3.6 Combination of life adjustment factors a2 and a3
3.3.7 SKF Life Theory
3.4 Calculation example
3.5 Calculation of dynamic bearing loads
3.5.1 Gear trains
3.5.2 Belt drives
3.5.3 Equivalent dynamic bearing load
3.5.4 Constant bearing load
3.5.5 Fluctuating bearing load
3.5.6 Requisite minimum load
3.6 Selecting static loaded bearing
3.6.1 Stationary bearing
3.6.2 Static load rating
3.6.3 Requisite basic static load rating
3.7 Radial location of bearings - Selection of fit
3.8 Bearing lubrication
3.9 Nomenclature
3.10 References
4 Shafts
4.1 Introduction
4.1.1 Terminology
4.2 Types of load
4.3 Shaft design considerations
4.3.1 Possible modes of failure
4.4 Static loading
4.5 Design for fatigue (cyclic load/dynamic load)
4.5.1 Stress concentration
4.5.2 S-N curve or Wöhler curve
4.5.3 Estimation of endurance level
4.5.4 Fluctuating load
4.6 Design for shaft deflections
4.7 Design for critical shaft speeds
4.8 Suggested design procedure, based on shaft yielding
4.9 Nomenclature
4.10 References
5 Shaft-hub Connections
5.1 Introduction
5.2 Positive connections
5.2.1 Pinned and taper-pinned joints
5.2.2 Parallel keys and Woodruff Keys
5.2.3 Splined joints
5.2.4 Prestressed shaft-hub connections
5.2.5 Failure of positive connections
5.3 Connection with force (Transmission by friction)
Vi er endnu ikke stødt på en boganmeldelse af 'Machine Elements' i de 503 aviser, blogs og andre medier, vi har fulgt siden 2010. Men vi har fundet 100.684 andre anmeldelser af bøger.